
1

Brian Gunney and Andy Wissink

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

SIAM CSE Conference
15 February 2005

Parallelizing the Point-Clustering Algorithm
in Structured Adaptive Mesh Refinement

This work was performed under the auspices of the U.S.
Department of Energy by University of California

Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

UCRL-PRES-209445

2

j
i

patch

level

hierarchy

Scalability challenges
1. Dynamic meshes are adapted throughout simulation.
2. Computation generally uses nearest neighbor data.

Grid adaption involves the entire grid.
3. LLNL’s BG/L machine will have 65K processors

Global nature of structured AMR mesh
adaption presents scalability challenges

Data is stored on
patches, the atomic

units in parallel
distribution).

Hierarchical mesh Simulation

3

Grid adaption uses a recursive bisection
algorithm to cluster tagged cells

Clustering
algorithm

Input tagged cells

Output boxes

Berger and Rigtousos, IEEE Transactions on
Systems, Man and Cybernetics, Vol. 21, No. 5, 1991.

1. Start with bounding box covering
whole domain

2. Form signature (ΣΣΣΣ) for box
3. If there are too many untagged cells

a. Cut at hole or inflection point to
form sub-boxes

b. Repeat on each sub-box

3
5
7
5
2
2
2
2
1
0
Σ

0 0 7 8 3 3 3 3 2 0 Σ

C
ut

 a
t h

ol
e

Cut at inflection point

4

Recent implementations of clustering
algorithm in SAMRAI use SPMD
model
fcn(box) {

h = signature(box)
if (h is acceptable)

accept(box)
else

split(h,left,right)
fcn(left)
fcn(right)

}

1. signature() includes global
sum-reduce.

2. accept() and split() are
local operations.

3. All processors run algorithm.

4. All processors have outputs.

fcn(box) {
h = signature(box)
if (h is acceptable)

accept(box)
else

split(h,left,right)
if (overlap(left)) fcn(left)
if (overlap(right)) fcn(right)

}

1. signature() includes sum-reduce to
processor 0.

2. accept() and split() include
broadcast from processor 0.

3. Only processor 0 runs full algorithm.

4. Only processor 0 has outputs, which
must be globalized using a broadcast.

Functions in red
require
communication
(synchronization)

Grouped communication:Global communication:

Wissink, Hysom and Hornung, Proceedings of 17th ACM Int’l Conf. on Supercomputing, 2003.

5

Clustering algorithm contains
independent paths appropriate for task-
parallel model

Procedural
signature(1)
split(1)
signature(2)
split(2)
signature(4)
accept(4)
signature(5)
accept(5)

signature(3)
accept(3)

O
rder of execution

Task-oriented
signature(1)
split(1)

signature(2)
split(2)

signature(3)
accept(3)

signature(4) signature(5)
accept(4) accept(5)

Independent

Dendogram

1
2 3

4 5

D
ependent

1. Impose specific ordering.
2. Create unneeded

synchronizations.

1. Each dendogram node is a task.
2. Do independent tasks concurrently.
3. Overlap communications and

computations in multiple tasks.

Unneeded sync.

Unneeded sync.

6

Task-parallel implementation follows
natural tasks in clustering algorithm

task(node) {
…
split(h,left,right)
add_to_task_mgr(left,right)
sleep_until_children_finish()
add_to_task_mgr(parent_node)

}

fcn(box) {
…
split(h,left,right)
if (overlap(left))

fcn(left)
if (overlap(right))

fcn(right)
}

Se
qu

en
tia

liz
ed

!

Task-oriented, newSequential, old

Replace with

� Replace sequential operations on left and right children with insertion into task
manager (next slide).

� Each instance of task() is associated with one node of the dendogram. It is
not recursive.

� Communication and sleeping steps are “interruptible” so waiting tasks can be
set aside to work on tasks that can make immediate progress.

� Tasks are initiated by insertion into task manager (not directly called).
� Task-parallel algorithm driven by task manager (next slide).

Interruptible
communication wait

Interruptible non-
communication wait

7

Task manager selects active tasks to
minimize processor wait times

…
Request n
Request m
Request l

MPI requests

…
Task r
Task q
Task p

Waiting tasks

…
Task j
Task i

Queued tasks

Tasks that can make immediate
progress without waiting (new

and awoken task)..
Pending communications

(MPI_Request objects from
non-blocking MPI calls).

Tasks awaiting communication
from signature(),

split(), accept(), …

Task Manager
maintains 3 arrays

Task Manager Algorithm (user-space thread controller):
1. Start/continue all tasks in task queue (and empty the queue)
2. Wait for some pending communication requests to complete
3. Continue waiting tasks for completed communications
4. Repeat until no more task or pending request exists.

8

Two optimizations affect new algorithm

Hand-coded collective communications along edges of a tree

Multi-owner option – select owner from participating processor group
� Reduces traffic congestion around single-owner
� Improves load balance
� Requires all-gather instead of broadcast for globalizing output

(drawback).

O
P

PP

P
P

PPP

P

Direct with N=10 processors,
O(N) complexity

O

P P

P P P P

P P P

Tree with N=10 processors,
O(log N) complexity

(Tree of
processors, not to
be confused with

dendogram!)

O

P
Owner
Participant

� Avoid expensive formation of MPI communicators.
� Supports non-blocking collective communications.

9

New algorithm improves clustering
performance and scalability

IBM: 16 processors/node

• Adapt four-level mesh around moving sinusoidal wave front.
• Fix problem-size. Increase processor count.
• Synchronize processors before clustering.
• Globalize (put all outputs on all processors).
• Time initial mesh generation and five global regrids.
• Collect max times across all processors.

Tagged cells

Linux cluster: 2 processors/node

Time to Cluster and Globalize Output on IBM

0
1
2
3
4
5
6
7
8
9

1 10 100 1000

Number of processors

W
al

l c
lo

ck
 (s

ec
on

ds
)

Wissink, et. al.
Synchronous
Asynchronous
Multi-owner

Time to Cluster and Globalize Output on Linux

0

2

4

6

8

10

12

1 10 100 1000 10000

Number of processors

W
al

l c
lo

ck
 (s

ec
on

ds
)

Wissink, et.al.
Synchronous
Asynchronous
Multi-owner

10

Clustering scales better than output
globalizing

Asynchronous Component Costs on IBM

0.01

0.1

1

10

1 10 100 1000

Number of processors

M
ax

 w
al

l c
lo

ck
 ti

m
e

Cluster
Globalize
Total

Multiowner Component Costs on IBM

0.01

0.1

1

10

1 10 100 1000

Number of processors

M
ax

 w
al

l c
lo

ck
 ti

m
e

Cluster
Globalize
Total

Asynchronous Component Costs on Linux

0.01

0.1

1

10

1 10 100 1000 10000

Number of processors

M
ax

 w
al

l c
lo

ck
 ti

m
e

Cluster
Globalize
Total

Multiowner Component Costs on Linux

0.01

0.1

1

10

1 10 100 1000 10000

Number of processors

M
ax

 w
al

l c
lo

ck
 ti

m
e

Cluster
Globalize
Total

Asynchronous Multiowner

L
i n

ux
 c

lu
st

e r
IB

M

11

Summary

� This work aims to reduce the regridding cost of SAMR on large-scale parallel

computers.

� We parallelized the clustering algorithm by wrapping the SPMD
implementation an asynchronous, interruptible tasks. A task manager selects
active tasks to minimize communication wait times.

� Task-parallel implementation significantly improves scaling trend over the
synchronous implementations

— Scaling trend is much more favorable

— Performance with low processor-count is comparable to synchronous algorithm,

but is machine dependent.

— Different variations of the implementation works better with different platforms

(and underlying MPI implementations).

� Clustering cost scales much better than output globalizing cost.

